Distributed Reinforcement Learning for Multiple Objective Optimization Problems

نویسندگان

  • Carlos E. Mariano
  • Eduardo F. Morales
چکیده

This paper describes the application and performance evaluation of a new algorithm for multiple objective optimization problems (MOOP) based on reinforcement learning. The new algorithm, called MDQL, considers a family of agents for each objective function involved in a MOOP. Each agent proposes a solution for its corresponding objective function. Agents leave traces while they construct solutions considering traces made by other agents. The solutions proposed by the agents are evaluated using a non-domination criterion and solutions in the final Pareto set for each iteration are rewarded. A mechanism for the application of MDQL in continuous spaces which considers a fixed set of possible actions for the states (the number of actions depends on the dimensionality of the MOOP), is also proposed. Each action represents a path direction and its magnitude is changed dynamically depending on the evaluation of the state that the agent reached. Constraints handling, based on reinforcement comparison, considers reference values for constraints, penalizing agents violating any of them proportionally to the violation committed. MDQL performance was measured with “error ratio” and “spacing” metrics on four test bed problems suggested in the literature, showing competitive results with state-of-the-art algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for the Solution of MultipleObjective Optimization Problems Based onReinforcement

Many problems can be characterized by several competing objectives. Multiple objective optimization problems have recently received considerable attention specially by the evolutionary algorithms community. Their proposals, however, require an adequate codiication of the problem into strings, which is not always easy to do. This paper introduces a new algorithm, called MDQL, for multiple object...

متن کامل

A New Distributed Reinforcement Learning Algorithm for MultipleObjective Optimization

This paper describes a new algorithm, called MDQL, for the solution of multiple objective optimization problems. MDQL is based on a new distributed Q-learning algorithm, called DQL, which is also introduced in this paper. In DQL a family of independent agents, exploring diierent options, nds a common policy in a common environment. Information about action goodness is transmitted using traces o...

متن کامل

Combining Multiple Correlated Reward and Shaping Signals by Measuring Confidence

Multi-objective problems with correlated objectives are a class of problems that deserve specific attention. In contrast to typical multi-objective problems, they do not require the identification of trade-offs between the objectives, as (near-) optimal solutions for any objective are (near-) optimal for every objective. Intelligently combining the feedback from these objectives, instead of onl...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000